A note on the convergence of the secant method for simple and multiple roots

نویسنده

  • Pedro Díez
چکیده

The secant method is one of the most popular methods for root finding. Standard text books in numerical analysis state that the secant method is super linear: the rate of convergence is set by the gold number. Nevertheless, this property holds only for simple roots. If the multiplicity of the root is larger than one, the convergence of the secant method becomes linear. This communication includes a detailed analysis of the secant method when it is used to approximate multiple roots. Thus, a proof of the linear convergence is shown. Moreover, the values of the corresponding asymptotic convergence factors are determined and are found to be also related with the golden ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Collocation Method in Finding Roots

In this paper we present a new method to find simple or multiple roots of functions in a finite interval. In this method using bisection method we can find an interval such that this function is one to one on it, thus we can transform problem of finding roots in this interval into an ordinary differential equation with boundary conditions. By solving this equation using collocation method we ca...

متن کامل

Two Settings of the Dai-Liao Parameter Based on Modified Secant Equations

Following the setting of the Dai-Liao (DL) parameter in conjugate gradient (CG) methods‎, ‎we introduce two new parameters based on the modified secant equation proposed by Li et al‎. ‎(Comput‎. ‎Optim‎. ‎Appl‎. ‎202:523-539‎, ‎2007) with two approaches‎, ‎which use an extended new conjugacy condition‎. ‎The first is based on a modified descent three-term search direction‎, ‎as the descent Hest...

متن کامل

Halley’s Method as the First Member of an Infinite Family of Cubic Order Rootfinding Methods

For each natural number m ≥ 3, we give a rootfinding method Hm, with cubic order of convergence for simple roots. However, for quadratic polynomials the order of convergence of Hm is m. Each Hm depends on the input, the corresponding function value, as well as the first two derivatives. We shall refer to this family as Halley Family, since H3 is the well-known method of Halley. For all m ≥ 4, t...

متن کامل

A new optimal method of fourth-order convergence for solving nonlinear equations

In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...

متن کامل

A Note on the Convergence of the Homotopy Analysis Method for Nonlinear Age-Structured Population Models

In this paper, a theorem is proved which presents the series solution obtained from the homotopy analysis method is convergent to the exact solution of nonlinear age-structured population models.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2003